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A charged particle in a time-varying magnetic field 

0 Olendski 
Atomic and Molecular Engineering Laboratory, Belarussian State University, Scorina 
Avenue 4, Minsk, 720050, Belarussia 

Received 4 June 1993, in final form 1 September 1993 

Abstract. Electron interaction with a uniform magnetic field, suddenly (by leaps) chang- 
ing in time, is considered theoretically. Characteristic ieatures of the switching-on process 
are derived; in particular, it is shown that at low values EIB (E is the energy of the 
electron before switching, B is the intensity of the magnetic field) transitions are possible 
only to even Landau states, and at large N B  there is an interaction only with high-lying 
levels. Generalizations to more than one switching are presented. If the magnetic field 
is switched off and switched on again aiter time T, then electrons from an even (odd) 
Landau state can make transitions only to an even (odd) level. Varying the ratio wB/w (we 
is the cyclotron frequency, m = n / T ) ,  one can efficiently wntrol the probabilities of 
electromagnetic emission or akorption. Various results of calculations ai the switching 
process from Bl#O to B,#O are also presented. In the appendix some properties of the 
functions H:(x)  =(-i)”Ef&) are given. 

Attainability of strong magnetic fields is raising the problem of an adequate theoreti- 
cal description of their influence on microstructures. It is well known that in the 
general case of a time-dependent magnetic field it is impossible to separate time and 
space variables in the Schrodinger equation. Thus one utilizes miscellaneous assump- 
tions and auxiliary methods. One such approach is used in this paper, where, on the 
basis of exact quantum-mechanical analysis, charged particle interaction with a 
magnetic field, suddenly (by leaps) changing in time, is considered theoretically. To 
the surprise of the author, no solution of this simple but instructive problem has been 
found in the literature. It follows from Maxwell’s equations that in this case an electric 
field is induced which is not zero at the switching moment only. This electric field, 
having as a function of time the form of one, or several, &functions, changes the 
energy spectrum of the particle, e.g. it can transform from a continuous to discrete 
spectrum and vice versa. In the process of transition from one state to another, the 
electron will emit or absorb electromagnetic radiation. We will show that changing the 
switching freq.Jency or (and) magnetic field intensity. one can efficiently control this 
process. 

Let us start by considering the situation when the magnetic field B = (O,O,B) is 
suddenly switching on at the moment t = O :  B(t) =Bh( t ) ,  where h(t) is the Heaviside 
step function. We choose the vector potential in Landau gaugeA = (-By,O,O). At t<  0 
the particle is described by a &normalized plane wave: 
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where the auxiliary phase factor exp[ - (ilh)pyyo] (yo= -pJeB, the centre of magnetic 
oscillations) is introduced for convenience of further calculations. At t > O  one has 
superposition of the usual Landau states (magnetic field does not change x and z 
components of kinetic momentum p ,  thus wavefunction dependence on these vari- 
ables remains the same): 

{i ) ( 2:*9 
1 

2nh q ( x ,  y, z, t )  =- exp - [pax +pzz] exp -i- 

wB=eBlmp, the cyclotron frequency, rB= (hleB)'", the magnetic radius, mp is the 
mass of the particle, H,(E) are Hermite polynomials. We omit here spin interaction 
with magnetic field. Factors C.(p,) satisfy the usual condition: 

CO 

Ic"(P,)12=1. (4) 
"4 

For their definition one should use continuity of the wavefunction at t =  0: 

Hence, it follows that 

Inserting (3) into (5) and calculating the integral [l], one has 

with? 

Since the magnetic field acts perpendicular to its direction, the most interesting 
case is when x and z components of kinetic momentum are zero. Then p,r,lh= 
(EIE;)'" (E is the total energy of the particle, E;=hwB/2) ,  and 

t At the process of &normalization it should be borne in mind that the &function 6(E) is measured in units 
of [ ] / E ] .  This explains the seeming discrepancy between the fact that C,, are dimensionless and their 
representation in (6). 
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Probability of finding particle in the nth state is defined by 

Graphs and tables of functions q,(E) can be found, for instance, in [2]. 

obeys the classical equation of the harmonic oscillator 
It is easy to check that the average y value (y)=Jqyy* dy of the wavepacket (2) 

and ((Ay)2)=(y2)-(y)2 oscillates with frequency Zm,, as would be expected for 
arbitrary wavepackets in a uniform magnetic field [3,4]. 

We now want to point out the most characteristic features of the I CLd12 dependence 
on energy E and intensity B ,  which follow from the properties of functions qn(E) [2]. If 
E < < g  (i.e. E 5 0  or (and) B+ m), then after switching, transitions are possible only 
to even Landau states, and the probability of hd ing  the particle on the level 2m 
changes with m according to the law (2n~)!IZ~(m!)~. Transitions to odd Landau levels 
are almost completely depressed. In the opposite case, E >> or (and) B - 0), 
transitions are possible only to levels with large numbers, n>> 1, and interaction with 
low states, because of its very small value, can be neglected. As seen from the graphs 
of ~ " ( 5 )  [2], for higher EIB, the higher levels come into play. However, on further 
increase in EIB, interaction with these levels vanishes making way for the states with 
still larger n .  I d l '  dependence on E and B at their intermediate values is character- 
ized, according to (8), by the square of functions q.(E), which are well known and 
have been tabled in detail in [Z, 51. 

It is interesting to investigate IC;dl' in the case E=mE$, m integer. For instance, 
if, before switching, the particle had ground-state energy of magnetic field, E = E i ,  
then after applying the field the transition to the first excited state is the most probable 
process, then to the fourth level, and only after that does the probability of the process 
at which the particle does not change energy occur. 

The results are easily generalized to the movement of wavepackets. If, for 
instance, at f < O  the wavefunction is 

(E+ 

then after switching one obtains 

Xexp -[pXx+pg] exp -I-f dp,dp,. [; ] [ .:$I 
A procedure similar to that described above gives the following expression for C,: 
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If the packet is Gaussian with RMS deviation rpv: 

then substituting (12) into (11) and calculating the integral [6] gives: 

At rpy+O, equation (13) transforms to (7) for interaction of the plane wave with 

Let us now consider the solution of the problem when the magnetic field B is 
momentum p!) with varying field. 

switched off at t =O:  B(f)=Bh(- t ) .  Wavefunctions are, at K O :  

(we suppose that the particle is in the mth Landau state); and at t>O: 

One can easily check that I* lDm(py)l*dpy= 1 m=O, 1,. . . . (17) 
..m 

As one can see, equation (17) in the switching-off process plays the same role as 
equation (4) in the switching-on procedure. 
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In the same way solutions are built for the case of more than one switching. For 
instance. if the magnetic field is switched on at t = O  and switched off at t=  
T(B(t)=B[h(t)-h(t-T)]) ,  then the wavefunction at t>Tis:  

*(X> Y ,  2, f )  

(18) 

with 

x exp[ - i( n + i) wBT] .  (19) 

It follows from (19) that 

ql(;py)qiep;) cos[(r-n)wBq 
I=n+l  

and 

We will now consider the situation when the magnetic field is switched o f f  at t = 0 
and switched on again at t =  T(B(t) =B[h(- t )  + h(t - T ) ] ) .  At t< 0 the wavefunction is 
expressed by (14), at O<t< T,  by (15), and at I> T it is 

Matching solutions at t=O and I= T,  one obtains 

Ckm=iX-"exp [ - i  ( k+- 1) wBT ] exp ( -i- ;:A T)Ih(OJ) 

It is seen from (23), that a particle from an even (odd) level after two switching can 
make a transition only to an even (odd) state (i.e. transitions are possible only 
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between levels with numbers 2m-+2(m+j) or 2m+1+2(m+j)+l ,  j=O,+l ,+  
2 ,  . . .). Calculation gives [6]:  

with r(E) r-function and zFl(u, b; c;  E )  a Gaussian hypergeometric function [ 5 ] ,  and 

where ( k +  m) is even. It is also seen that IChlz is symmetric to the replacement of k 
and m. 

Probabilities of transitions from the ground state are 

The analogous values for the first excited state are as follows: 

One can easily show [7] that 

o=o, 1 
k = O  

(27) 

Obviously, equations similar to (27) are true for any other level. 
It follows from (2%) that maximal probability for transition from ground state to 
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the 2kth level is achieved at w,T=ZV%, and for transition from the first excited state 
to the (2k+ 1)th level (equation (26a)) at w,T=2flk. 

increasing the number of switchings, one obtains a periodic process with frequency 
UJ = d T .  This process simulates the electron behaviour in a variable magnetic field. It 
follows from (19), (20) and (24)-(26) that varying wB/w (i.e. changing intensity B or 
(and) frequency w )  one can change the probabilities of electromagnetic absorption or 
emission over a wide range. Thus, not only space [8 ] ,  but also time-varying magnetic 
fields may be used for the desired electromagnetic generation in radio and light 
frequencies ranges. 

It is instructive to investigate the process in which the magnetic field is suddenly 
changing from Bl # 0 to Bz f 0. In this case the initial wave function is 

After switching (t>O) one obtains 

Here 

i = l , Z .  
eB, P X  

r,= (hl(eB,))”’ Ye= -- UJ.=-  
r mP eBi 

As in the previous cases 

ICnmlZ=1 m=O, 1,. . 
“ = O  

Calculation of C,, gives [6]t 

(BIB,)‘” ] ( n t m - I  

1 ~ 0 1 ~ 0 2  (B2-BilZ 
2 rl r, (B ,  + B2)(BIBZ)1’2 (B, + Bz)2 n!m! C.,=exp 

T Equation 2.20.16.11 in [6] is wrong; namely, factor ’2’ should be removed from all radicands, both in 
denominator (first radicand) and in numerators (radicands of arguments of Hermite polynomials). 
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In particular, for transitions from the ground state we have 

with Hi(E)=(-i)"Hn(if) [ 5 ] .  Some properties of functions 
appendix. 

cnm(px=o)= ((B,+B,)2n+"-1n!m!) (m) (m) 

are given in the 

For px  = 0, equation (31) takes form: 

I/? B, - B2 ml2 Bz -EI nl? (BiBz)" 

From (33) and the properties of Hetmite polynomials it follows thaf in this case once 
again, transitions are possible only between even (odd) states. In particular, for 
transitions from the ground state 

The probability of remaining in the ground state is 

Using (34) and equation 5.2.13.1 in [7], one can directly show that (30) holds for 
m=O. 

After n switchings, which take place after time T, the wavefunction is 

x i  C&yl"(y)exp[ -i(k+i)wzt] n = 2 j + l  
t = 0  
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and CE are: 

i- 1 

(at n = 2  the term 

vanishes) and 

1-1 

x n Ci~+,.l~”+lCf~+l.i~“+2 n=2j+l j Z  1 (36b) 
“=V 

where we assume that lo=m, l ,=k ,  and C,,.,, are expressed by equation (31). The 
probability of finding the particle in the kth state is defined by ICP!/’. In particular, 
after two switchings 

DI } (37) ( f = ” t l  

- 
I@12==C c.,cnk c.,cn,+2 ctmcfkcos[(l-n)wzTI . 

“=O 

As a final example, we consider the situation with B1 = -B2 B.  The wavefunction 
at t<O is expressed by (14), and at 0 0  is 

1 

with 

The C,, are [6]: 
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where Lr(5) are Laguerre polynomials. It is seen from (40) that at p x =  0 there are no 
transitions C,,,(p,=0)=6.,. From a physical point of view this is explained by 
degeneracy of the Landau states at p .  = 0 with respect to the field direction?. At p .  # 0 
the centre of the parabolic well is suddenly switched from pointy =yo toy = -yo, and, 
thus, transitions are possible. Equations for several switchings are similar to (36). 

Two final remarks. First, there are no difficulties in generalization of the results 
obtained for the simultaneous influence of crossed electric and magnetic fields. 
Second, the proposed procedure may be used in calculations for all systems with time- 
varying magnetic fields, for instance, the time-dependent Aharonov-Bohm effect [9] 
or a potential well in time-varying external electric and magnetic fields-a problem we 
have solved very recently [lo]. 

In conclusion, we have investigated theoretically for the first time, electron 
interaction with a magnetic field which suddenly changes in time, and have defined its 
characteristic features. The properties revealed offer interesting applications in the 
generation of electromagnetic radiation. 

Appendix 

We here point out some properties of polynomials H:(x).  For comparison similar 
properties of Hermite polynomials are also given. 

H:(x)  = (-i)”Hn(Lx) H.(x) = (-i)”H:@) 

t Taking into account interaction with spin removes this degeneracy 
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